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The result of arithmetic operations
applied on general quadratic fuzzy

sets
J.W. Park* and Y.S. Yun'

Abstract. A general quadratic fuzzy set is a quadratic fuzzy set that
may not have maximum value 1. We calculated the Zadeh’s max-
min composition operator for two general quadratic fuzzy sets. By
using parametric operations between two a-cuts which are regions,
we generalized the general quadratic fuzzy sets from R to R? and cal-
culated the parametric operations for two generalized 2-dimensional
quadratic fuzzy sets.

We show that the parametric operations for two generalized
quadratic fuzzy sets defined on R? is a generalization of a Zadeh’s
max-min composition operations for two general quadratic fuzzy sets
defined on R.
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1. Introduction

The membership function of quadratic fuzzy number consists of a
quadratic function with the maximum value 1. A general quadratic fuzzy
set is a quadratic fuzzy set that may not have maximum value 1. In [4], we

calculated the extended operations for generalized quadratic fuzzy sets.

In [2], we generalized the quadratic fuzzy numbers from R to RZ2.

By defining parametric operations between two a-cuts which are regions,
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we got the parametric operations for two quadratic fuzzy numbers defined
on R2. The results for the parametric operations are the generalization
of Zadeh’s extended algebraic operations. We proved that the results for
the parametric operations became the generalization of Zadeh’s extended

algebraic operations.

Moreover, in [5], we generalized the general quadratic fuzzy sets from
R to R? and calculated the parametric operations for two generalized 2-

dimensional quadratic fuzzy sets.

In this paper, we show that the parametric operations for two gener-
alized quadratic fuzzy sets defined on R? is a generalization of a Zadeh’s
max-min composition operations for two general quadratic fuzzy sets de-

fined on R.

2. Zadeh’s max-min composition operations
for generalized quadratic fuzzy sets defined
on R

We begin by defining a-cut and a-set of the fuzzy set A on R with

the membership function g4 (z).
An «a-cut of the fuzzy number A is defined by
Ay ={z €R | pa(z) > a} if a € (0,1]
and
Ao =clz € R| pa(x) > 0}.

For o € (0,1), the set A* = {z € X | pa(z) = a} is said to be the
a-set of the fuzzy set A, A° is the boundary of {x € R | pa(z) > 0} and
Al = A,

Definition 2.1 [8]. The extended addition A(+)B, extended subtraction
A(—)B, extended multiplication A(-)B and extended division A(/)B are
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fuzzy sets with membership functions as follows. For all z € A and y € B,

NA(*)B(Z) = sup min{pa(z),ue(y)}, *=+,—,/

Z=T*Y

We now generalize the quadratic fuzzy set. A general quadratic fuzzy
set is symmetric and may not have maximum value 1. The graph of mem-
bership function of symmetric general quadratic fuzzy set is symmetric with

respect to some line x = m.

Definition 2.2 [4]. A fuzzy set A with a membership function

0, T <w1, T3 S T,
pa(x) = 2
—a(x —x1)(x —29) = —alz —m)*+p, =z <z <9,

where m = %,O <a,0<p<1,is called a generalized quadratic fuzzy

set and denoted by [[z1,p, z2]] or [[a, m,p]]+.

Theorem 2.3 [4]. Let

A = [[z1,p, 22]] = [[a, m, p]]+

and
B = H.’L‘3,q,l’4]] = [[b’ n’q]]-‘r
be generalized quadratic fuzzy sets.

Suppose p < q and pp(x) > p on [k1,ks]. Then we have the followings:

(1) A(+)B is a fuzzy set with a membership function

0 (r <z 423, 220+ 24 < 2)

fil@) (z1+a3<z<m+k)
Hac)p(T) = D (m+k <x<m+ks)

fa(x) (m+ky <ax<xg+24)
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where
i )—;(fb (a+ b+ an+bn) — abn(am + b
(@) =5y \abm(a an + bn) — abn(am + bm
+ an + bn) — ab(p + q) + a®q + b*p + 2ab(am + bm + an
+ bn)z — ab(a + b)x?® + 2ab(m +n — x) - \/gl(x)),
1
fa(zx) = T o TR (—abm(a +b+an+bn) — abn(am + bm
+an + bn) — ab(p + q) + a®q + b*p + 2ab(am + bm + an
+ bn)x — ab(a + b)x? — 2ab(m +n — x) - gl(m)),
and

g1(x) = ab(m +n)? + (a — b)(p — q) — 2ab(m + n)z + abz?.

(2) A(—)B is a fuzzy set with a membership function

0 (r <1 — 24,29 — 23 < 2)
@) (1 —za <z <m— ko)
pa-yp(z) =
P (m—ky<ax<m-—k)
falx) (m—k <z <x9—1x3)
where
[ p— (—abm(am + b bn) — abn(an + b
3(%) =y gy e \~abmlam + bm — an — bn) — abn(an + bn
—am —bm) — ab(p + q) + a*q + b*p + 2ab(am + bm — an
—bn)z — ab®2® 4 2ab(m —n — x) - gg(x)),
1
fa(x) =2 b1 1? (—abm(am +bm — an — bn) — abn(an + bn
—am —bm) — ab(p + q) + a®q + b*p + 2ab(am + bm — an
—bn)z — ab®x* — 2ab(m —n — x) - gg(x)),
and

g2(x) = ab(m —n)? + (a — b)(p — q) — 2ab(m — n)x + abz?.
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(3) Ifp=gq, A(")B is a fuzzy set with a membership function

(z) = 0 (z < mix3, T224 < X)
BaB\®) = fs(x) (125 <2 < @224)

where
1 1
fs(x) = 5(—‘17”2 —bn® +2p) — Vabr + 5\/93(55)7
g3(x) = — am?(am? + 3bn?) — bn?(bn? + 3am?) + 2(am? + bn?

1
——— 1 —8(am?
8vabx { (
+bn? — 2p)% + 8(am? + bn? — 2p)hy (z) — 16h2(x)},

—2p)% + 8p(am?® + bn® — p) + S8abmnx —

hi(z) =am?(am? + 2bn?) + bn?(bn? + 2am?) — 6p(am?® + bn? — p)
— dabmnx — 2abx?,

ha(x) =abm?*n?(am? + bn? — 4p) — am?p(am? — 3p)
— bn?p(bn? — 3p) — 2p> — 2abmn(am?® + bn?* — 2p)x

+ ab(am?® + bn® + 2p)x>.

(4) A(/)B is a fuzzy set with a membership function

0 (r < x1/x4, T2/23 < X)
_J fel@) (z1/za <z <m/ks)
MA(/)B(JJ) =
p (m/ko <x < m/ki)
fa(@)  (m/ky <@ < wa/xs)
where
1 2 2 2 9
fo(x) :b2 — 2abz? + 224 (_b (am® + p) + 2ab*mnz — ab(am
+bn? +p+ q)z? + 2a*bmna® — a®(bn* — q)z*
+ 2abx(m — ngj) . 94(1'))7
1 2 2 2 2
fa(z) :b2 — 2abz? + 224 (*b (am* + p) + 2ab“mnz — ab(am

+bn? +p+ q)z? + 2a*bmna® — a®(bn? — q)x*

— 2abz(m — nx) - 94(35))7
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and

ga(x) = blam?* — p+ q) — 2abmnzx + a(bn® + p — q)z*

Proof. It is enough to calculate the a-cut of A(+)B, A(—)B, A(-)B and
A(/)B. Note that
0 (r <1, 29 <2)

pa(x) = —alz —z)(z - o)
= —a(zx—m)?+p (1 <z <x9)

and
0 (x <3, 4 <x)
pp(x) =4 —blx —z3)(x —x4)
=-blx—n)?+q (z3<z<uz4)
Let
A = [a(la) éa)]
and

= 04,04
be the a-cuts of A and B, respectively.

Since

o= —a(af™ —m)* +p = —a(af” —m)* +p,

a «@ b—« p—«
Ao = (a0 = o= L2 s f222),

Similarly, we have

[b(a b(a _ /q_a n+ lq Oé

(1) Since p < q and pp(x) > p on [k, ko], pap(x) = pif z € [m +

we have
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k1, m + k2. By the above facts,

m+\/u+n+\/q_a]
a b

If x € [x1 + w3, m + ky], then m — /2% +n — /4% = .

Hence a = f1(x). For x € [m + ka, 2 + 4], we have o = fo(z).

In cases of (2), (3), and (4), we can prove similarly. O

3. Parametric operations for generalized
2-dimensional quadratic fuzzy sets on R?

In this section, we define the generalized 2-dimensional quadratic
fuzzy sets on R?. We defined the parametric operations between two 2-
dimensional quadratic fuzzy sets using the operations between a-sets in

R2. The a-set is region in R2.

We interpret the existing method from a different perspective and

apply the method to a-sets which are regions in R2.

Definition 3.1. A fuzzy set A with a membership function

h— ((z;§1)2 Jr(y*bgl)z)’

pa(z,y) = if b?(z—x1)?+a*(y — 1) < hab?,
0, otherwise,

where a,b >0, 21 —a<z<z1+a, y1 " b<y<y;+band 0 < h <1
is called the the generalized 2-dimensional quadratic fuzzy set and denoted
by [[a, x1, h, b, y1]]°.

Note that pa(z,y) is a cone. The intersections of p4(z,y) and the hori-

zontal planes z = o (0 < a < 1) are ellipses. The intersections of p4(x,y)
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and the vertical planes y —y1 = k(z —x1) (k € R) are symmetric quadratic

fuzzy sets in those planes. If a = b, ellipses become circles.

The a-cut A, of a generalized 2-dimensional quadratic fuzzy set A =
[[a, 21, h, b, y1]]? is the interior of the ellipse in zy-plane including the bound-

ary

po={y ere | GonP ow? gy

Theorem 3.2 [3]. Let A be a continuous convex fuzzy number defined on
R? and A® = {(x,y) € R?|ua(z,y) = a} be the a-set of A. Then for
all @ € (0,1), there exist continuous functions f{(t) and f§(t) defined on
[0, 27| such that

A% ={(ff(t), f5() e R*0 < t < 27}

Proof. Let a € (0,1) be fixed. Since A is a convex fuzzy number defined

on R?, the a-cut A, is convex subset in R2. Let
I =inf{z|pa(z,y) = a} and m = sup{z|pa(z,y) = a}.

The upper boundary of A, is the graph of a piecewise continuous
concave function h(x) and the lower boundary of A, is also the graph of

a piecewise continuous convex function ho(z) defined on [I,m].

Since hq(x) is piecewise continuous, hq(z) is continuous on [I,m] ex-

cept finitely many points | < x, < 1 < -+ < 21 < M.
Note that x; and z,, may equal to the end points m and [, respectively.

Similarly, since hg(z) is also piecewise continuous, ha(z) is continuous

on [I,m] except finitely many points | < 11 < Tpta < -+ < Tppm < M.

Note that z,,+1 and =+, may equal to the end points [ and m, respectively.

If the end points | and m(or one of them) equal to some x;, we can prove
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the above facts similarly. Define
1 .
ff‘(t):i(mfl)(costfl)er, if ¢e]l0,7],

except the points

N —
uzwf«(%ﬁtﬂ)i:LZ~wn
p—

Then f{(t) is piecewise continuous on [0, 7] and
{{l<z<m|z#z,i=1,2,--- ,n}
= {fla(t”t € [O?ﬂ-Lt 7é t’ivi = 1727"' 7n}'
Define
1
@) = i(m —D(cost—1)+m, if te€ [r,2n],

except the points

2 n+j — .
tj—cosl( ($ +j lm)+1>’ i=12-- m.
m —

Then f{(t) is piecewise continuous on [, 27| and
{I<z<mlz#2,45,j=1,2,--,m}

= {fla(t”t S [777277]71; 7é tn-l—jmj = 172a"' 7m}-

The explicit proof for piecewise continuous can be proved by the same
way in the proof of Theorem 3.2([1]). Focussing the construction of func-

tions f{(t) and f§(¢), we outline our proof.

Define f{(t) and f$(t) by
) = %(m —1)(cost —1)+m, te]0,2n],

and
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Then we have
A% ={(ff (1), f5(1)) e R?|0 < ¢ < 27}
The proof is complete. U
Definition 3.3. Let A and B be convex fuzzy sets defined on R? and
A% ={(z,y) € R?|ua(z,y) = a} = {(f{'(t), f5'(t) € R?|0 < t < 27}
B* = {(2,y) € R*|up(z,y) = o} = {(97(t), g5 (t)) € R?|0 <t < 27}

be the a-sets of A and B, respectively.

For a € (0,1), we define that the parametric addition A(+),B, paramet-
ric subtraction A(—),B, parametric multiplication A(-),B and parametric
division A(/),B of two fuzzy sets A and B are fuzzy sets that have their

a-sets as follows:
(1) A(+)pB :

(A(+)pB)™ = {(f1(t) + g7 (1), f5'(t) + 95 () € R?|0 < ¢ < 27}

(2) A(-)pB
(A(=)pB)* = {(za(t),ya(t)) € R?0 < t < 27},
where
o) = [0 — gt m), o<i<n
: ft) — gt —m), if w<t<2m
and
) —gst4m), f0<t<mw
vl = {f&(t) —gs(t—m), if m<t<2m
(3) A()pB

(A()pB)* = {(f1'(t) - g7 (1), 5 (1) - 95 (1)) € R*|0 < t < 2}
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(4) A(/)pB
(A())pB)™ = {(za(t), ya(t)) € R*0 < t < 27},
where
JT(t)
Za(t) oo (E+ ) 0<t<m),
f(@)
Zo(t) = preYr— (r <t <2m)
and
_f3()
vl = S5 s (0=t
0 _
ya(t)—gg(t_ﬁ) (m <t <2m)

For « = 0 and @ = 1, (A(x),B)° = lim, o+ (A(x),B)* and
(A(*)p,B)t = lim,_,1- (A(x),B)%, where * = +, —, -, /.

Theorem 3.4 [5]. Let

A=lar, 21, h1, b1, n]]?

and

B = HCLQ, x2ah/2a b27 y2]]2 (O < hl < h2 < 1)

be two generalized 2-dimensional quadratic fuzzy sets. Since A and B are
convez fuzzy sets defined on R?, by Theorem 3.2, there exists f&(t), g2 (t)
(1 =1,2) such that

A% = {(f7(1), f5'(1) € R*|0 < t < 2},
B* = {(g7(t), 95 (1) € R?|0 <t < 2},

Since

A = [[al, 1, h17 bla yl]]2
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and
B = [[az, ®2, ha, ba, 2]]?,
we have
fift) =21+ CL1\/h1fOzcost7
f3(t) =y + bi\/h1 — asint,
gy (t) = a2+ azmcos t,
g3 (t) =y2 + bor/hs — asint.

For 0 < o < hy, we have the following:

(1) (A(+)pB)*:

Ay ={e) | (o’

+ (bl\/hftayi;;/;@ - a)2 - 1}'
(2) (A(=)pB)™:

Ay ={(e) e v )

o= =) =)

(3) (AC)pB)* = {(za(t),ya(t)) | 0 <t < 2m}:

To(t) = x129 + (xlag\/m + xoaq m) cost
+ alagmmcosz t,

Ya(t) = y1y2 + (y1b2v/ha — a + ya2bi/hy — a)sint
+ blbgmmSiHQ t.

(4) (A(/)pB)* ={(za(t),ya(t)) | 0 <t < 2}

1+ a1vhi — acost
T9 — agv ha — avcost

T (t) =
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and

_y1+bivhr —asint

«(t) = .
4 ( ) ygfng/hg — asint

If a = hy, we have

(A(*)PB)hl = lim (A(*)pB)aa e /a

a—hi

and for hy < a < hg, by the Zadeh’s max-min principle operations,

we have to define

Proof. (1) Let 0 < a < hy. Since

JTr(t) + g7 (t) =21 + a2 + (a1m+a2\/h2 — a)cost

and
Fs() + g5(t) = y1 + y2 + (b1vV/hy — a + byy/hy — a)sint,
we have
oy — 2
A(+),B)* ={(w,y) € R?| i
(ApB)* ={(y) € B (= T )
+( Y—Y1— Y2 )2:1}
bl\/ﬁ“!‘bzx/hg—&
In cases of (2), (3), and (4), we can prove similarly. O

4. A generalization of a general quadratic fuzzy
sets

In this section, we show that the parametric operations for two gen-
eralized quadratic fuzzy sets defined on R? is a generalization of a Zadeh’s
max-min composition operations for two general quadratic fuzzy sets de-
fined on R. For that, we have to prove that the intersections of the results

on R? and vertical plane are as same as those on R.
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Theorem 4.1. For x = +, —, -, /, let pauyp(w,y) be the results in
Theorem 3.4 and payp(x) be the results in Theorem 2.5.

Let ,u}A(*)B(x, 0) be the fuzzy sets on xz-plane such that

aos(w.0) N {2z — plane} = uh ) 5 (2,0).

Then we have

M}q(*)B(LO) = pa)B(T).

Proof. In Theorem 2.3, A and B are symmetric generalized quadratic fuzzy
sets. Thus we consider only the symmetric case in Theorem 3.4. Let a; = by

and as = by in Theorem 3.4.

Let

A=la1, z1, h1, a1, y1))* = [[a1, 21, b1, 1))

and

B = [[ag, w2, ha, az,yo]]* = [[az, x2, ha, o]l
Since y; = y2 = 0, A = [[a1, 21, h1, 0]]2 and B = [[az, x2, ha, 0]]?.
Thus we have
hy — (% + Z%), (z —z1)* + y* < hyai,

IU‘A(x>y) = {

0, otherwise,

and
A, = {(:c,y) e R? ’ (x—x1)? + 9% < a2l fa)}

= {(@y er?| (7%%)2 + Qw%f <1}.

Similarly,

B ) S T 222
,UzB(LL',y): h2 ( a3 +“%>’ (1’ x2) +y 7h2a2,

0, otherwise,
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and
B, = {(x,y) € R? ‘ (x — x2)* + 9% < a(ho — a)}
T — X2 2 Y 2
{wer| (Y () <)
{(x y) (Clg hQ—OZ) <a2 h2—a> - }
We calculate the end points of O-cuts and hi-cuts of /1114(*)3(95, 0) and
B B(T).

(1) If y = 0, by Theorem 3.4,

lim (A(+),B)* = {(x,()) € R? ‘ (w)z - 1}.

a—0+ a1vhi + azv/ha
Thus
T =1 —l—xgi(al\/hl —|—a2\/h2). (41)
If

pa(z,y) = pp(z,y) =0
Sz —x1)? +9y* =hia? and
(x — 29)* + y* = hodl.

Thus if y = 0, we have

r=x1 a1\ hi, T = To + asy/ ho. (4.2)

From (4.1) and (4,2), the 0-cut of M}4(+)B(x’0) is equal to the 0-cut
of pa(+)p(z) in Theorem 2.3. If y = 0, by Theorem 3.4,

alir}rll;(A(-l-)pB)a - {(m,O) € R? ] (%)2 = 1}.

Thus
xr =T +£C2:|:((12\/ hg*hl). (43)

To avoid confusion, for z; (i = 1,2,3,4) in Theorem 2.3, put z; =
x; (1=1,2,3,4). To sum up, we have

1
a= 7,21 =721 —a1vhi,z2 =1 +arvhi,m =z, p=hy,
b:

(4.4)
ész =Ty — azvho,z4 = 2 +azvho,n =123, q=hs.
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Ify=0and a = hy, B" = {(z,y) € R? | (x — 22)% = a3 (ha — h1)}.
Thus z = 9 £ asv/hy — hy. This means that k; and ks in Theorem 2.3 are
k1 = 29 — asvVha — hy and ko = 29 + as\/ha — h1. Therefore

m+k1:I1+l‘270J2\/h27h1
m+k2:x1+x2+a2\/h2—h1

From (4.3) and (4,5), the hy-cut of :“il(+)B(x’ 0) is equal to the h;-cut

(4.5)

of pac4+)p(z) in Theorem 2.3.

Putting y = 0 in (A(+),B)*, we have

{(@,0)e”?| <a1\/h1x—_ax41— ;:\fth _ a)z -1} (4.6)

Let f(z) be a function such that a« = f(z) satisfies equation (4.6). For

function fi(x) in Theorem 2.3, the proof is complete if we prove f(z) =
fi(x). Since there is an error in calculating function fi(x), f1(x) needs to

be replaced with Fi(x).

G(x)
aib<a(—b

— 2abmn + 2abnz — abn® + 2abmx),

m+n—z)—bp+aq — abm? — abx?
( ) —bp+aq

Fl(x) =

where
G(z) = 2ab(\/H (x) — b — bn + bz),
H(z) = ap + 2abmn — aq + abm?® + abx® — 2abma — 2abnx + abn?
—bp+ bg.
Therefore, we need to prove that f(x) = Fy(x).

It is hard to prove that f(x) and Fj(x) are the same, since they are
greatly different in terms of forms. However, all we need to prove is that

both functions share the same result in the interval [z1 4+ 23, m + k1].

By using Mathematica, we compared the graphs in the interval [x; +

x3, m+ k1] and saw that they are identical. For further proof, we also need



General quadratic fuzzy sets 63

to revise and compare the functions, but for now, we will prove that 0-cuts
and hp-cuts are the same, respectively.

(2) If y = 0, by Theorem 3.4,

lim (A(-),B)* = {(:c,O) € R? ‘ (Lﬁm)2 - 1}.

a—0+ Ch\/E + as/ho
r =T —.’Egi(al\/ hl + asy/ hg) (47)

By (4.4), we have

{21—24—x1—x2—(a1m+a2¢5), (4.8)

290 — 23 =1 — T2+ (alx/ hi + ag\/hg).
From (4.7) and (4,8), the 0-cut of uk(_)B(x,O) is equal to the O-cut of

pa(—yg(x) in Theorem 2.3. If y = 0, by Theorem 3.4,

Thus
l':wl—xg:t(ag\/hg—hl). (49)
By (4.4), we have

mfkg =1 — T2 — a2\ hg 7h1, mfkl =21 —ZTy+ag\ hQ 7h1. (410)

From (4.9) and (4,10), the hy-cut of piy ) 5(2,0) is equal to the hy-cut

of p14(—yp(x) in Theorem 2.3.
(3) Since z4(t) = (x1 + a1vh1 — acost)(z2 + azv/he — acost), by (4.4),
wo(m) = (w1 — a1 v/h1) (w2 — a2 v/ha) = 21 23.
Similarly, by (4.4),

1’0(0) $0(27T) = (CEl + a1/ hl)(CEQ —+ a4/ hg) = Z92%4,
Thy (71') = 1‘1(1‘2 — as\/ h2 — h1) = mkl,
xp, (0) = zp, (2m) = z1(22 + a2/ ha — h1) = mks.
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Thus the O-cut is [z1x3, x2x4] and the hi-cut is [mky, mks|. The
result (3) of Theorem 2.3 should be corrected.

L1

4) Si t) = , by (4.4),
(4) Since xp, (t) %o — asv/ha — hy cost y (4.4)
lim zp, (t) = = -5
o T pytasha — P ko

lim xp, (t) = lim xzp, (t) 7 = m,
t—0+ t—27— To —asvVhe —h1 k1
z1 + a1vhy _ 2
T2 — azx/h_z B z3

x0(0) = 2o (2m) =

Thus the 0-cut and hj-cut of #114(/)13(377 0) are equal to the 0-cut and
the hi-cut of pa(/)p(x) in Theorem 2.3, respectively. O

For example, if A = [[6,3,1,8,5]]> and B = [[4,6, %,6,8]]?, we have

the following graphs A(+),B and A(—),B.

Figure 2: B
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Figure 4: A(—),B

5. Conclusion

In [4] and [5], we had defined quadratic fuzzy sets and general quadratic
fuzzy sets on R and R?, and we had obtained the results of arithmetic op-
erations defined using Zadeh’s max-min composition operations applied on

these fuzzy sets.

In this paper, we proved that results of arithmetic operations applied
on general quadratic fuzzy sets on R? is a generalization of results of arith-
metic operations applied on general quadratic fuzzy sets on R. That is,
we proved that the section of results of arithmetic operations applied on a
general quadratic fuzzy sets on R? is the same as the results of arithmetic
operations applied on a section of a general quadratic fuzzy sets on R2,

which is a general quadratic fuzzy set on R.
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